ELG 5255 Applied Machine Learning

3 crédits
Genie electrique
Faculte de genie
Machine learning is an effective tool to design systems that learn from experience and adapt to an environment. Theory and applications of machine learning to the design of electrical and computer systems, devices and networks by using techniques that utilize statistics, neural computation and information theory. Fundamentals of supervised learning, Bayesian estimation, clustering and unsupervised learning, multivariate, parametric and non-parametric methods, kernel machines, hidden Markov models, multilayer perceptron networks and deep neural networks, ensemble learning and reinforcement learning. Design and testing of machine learning techniques integrated into real-world systems, devices and networks. Guidelines for machine learning experiments, methods for cross-validation and resampling, classifier performance analysis and tools for comparing classification algorithms and analysis of variance to compare multiple algorithms.

Volet:

Cours magistral

Exigences:

Courses ELG 5255 , CSI 5155 , DTO 5100 , DTO 5101 , IAI 5100 , IAI 5101 , MIA 5100 , SYS 5185 cannot be combined for units.

Terme proposées précédemment:

Automne
Hiver
Été
Tous Les Professeurs
Moyenne A (9.338)
Le plus fréquent: A+ (53%)
275 étudiants

P

S

NS

F

D

C

B

A-

A+

Professeur Inconnus

Hiver 2024 - W00

Moyenne A (9.480)
Le plus fréquent: A+ (52%)
25 étudiants

P

S

NS

F

D

C

B

A-

A+

Hitham Jleed

Autome 2023 - F00

Moyenne A- (8.296)
Le plus fréquent: A+ (33%)
27 étudiants

P

S

NS

F

D

C

B

A-

A+

Murat Simsek

3 section de l'Été 2022 au l'Été 2023

Moyenne A (9.448)
Le plus fréquent: A+ (55%)
223 étudiants

P

S

NS

F

D

C

B

A-

A+